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Abstract. Collisional damping widths of giant monopole and quadrupole excitations for 120Sn and 208Pb at
zero and finite temperatures are calculated within Thomas-Fermi approximation by employing the micro-
scopic in-medium cross-sections of Li and Machleidt and the phenomenological Skyrme and Gogny forces,
and are compared with each other. The results for the collisional widths of giant monopole and quadrupole
vibrations at zero temperature as a function of the mass number show that the collisional damping of giant
monopole vibrations accounts for about 30 − 40% of the observed widths at zero temperature, while for
giant quadrupole vibrations it accounts for only 20− 30% of the observed widths at zero temperature.

PACS. 24.30.Cz Giant resonances – 24.30.Gd Other resonances – 25.70.Ef Resonances – 25.70.Lm Strongly
damped collisions

Nuclear collective vibrations built on the ground state
and on the excited states of the nucleus have been studied
extensively during the last several years both theoretically
and experimentally [1]. On the theoretical side, much ef-
fort has been devoted to understand the damping proper-
ties of giant dipole excitations at zero and finite temper-
atures. In medium-weight and heavy nuclei at relatively
low temperatures the damping results mostly from the
spreading width Γ ↓ which is due to mixing of the collective
state with the nearby more complex doorway states [2–4].
There are essentially two different approaches for calcula-
tion of the spreading widths: i) coherent mechanism due
to coupling with low-lying surface modes which provides
an important mechanism for damping of giant resonance
in particular at low temperatures [5–8], ii) damping due
to the coupling with incoherent 2p-2h states which is usu-
ally referred to as the collisional damping [9–12], and the
Landau damping modified by two-body collisions [13–15].
The investigations carried out on the basis of these ap-
proaches have been partially successful in explaining the
broadening of the giant dipole resonance with increasing
temperature. In this work, we do not consider the coherent
contribution to damping, but investigate the collisional
damping of isoscalar giant monopole and isoscalar giant
quadrupole resonances at zero and finite temperatures due
to decay of the collective state into incoherent 2p-2h ex-
citations in the basis of a semi-classical non-Markovian
transport approach. In this approach, the collisional term
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involves two-body transition rates which can be expressed
in terms of the in-medium scattering cross-sections [10].
Therefore, in order to assess the contribution of collisional
damping to the total width of giant resonance excitations,
we need realistic in-medium cross-sections which correctly
interpolate between the free space and the medium. In pre-
vious investigations, the contributions of spreading width
resulting from the decay of the collective state into in-
coherent 2p-2h states have been estimated by employing
either free nucleon-nucleon cross-sections or an effective
Skyrme force [9,10]. However, Skyrme force at most can
provide a semiquantitative description of the collisional
damping since it provides a poor approximation in the
collisional term, because in the vicinity of nuclear sur-
face it does not match at all to the free nucleon-nucleon
cross-sections. In a recent work, we calculated the colli-
sional damping width of the giant dipole excitations by
employing the microscopic in-medium cross-sections of Li
and Machleidt [16], which interpolate correctly between
the free space and the medium and provide the best avail-
able input for determining the magnitude of the collisional
damping [17]. In the present work, we extend this analy-
sis to the study of the collisional damping widths of giant
monopole and quadrupole excitations by employing the
microscopic in-medium cross-sections of Li and Machleidt
and phenomenological Skyrme and Gogny forces.

We study the collective vibrations in the small ampli-
tude limit of the extended TDHF theory in which damp-
ing resulting from the coupling of the collective state to
incoherent 2p-2h states is included in the form of a non-
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Fig. 1. The spin-isospin averaged nucleon-nucleon in-medium cross-sections as a function of bombarding energy Elab at several
different densities. Dotted lines are cross-sections of Li and Machleidt, and solid and dashed lines are cross-sections associated
with the SkM∗ and the Gogny forces with the bare nucleon mass (left) and the effective nucleon mass (right), respectively.

Markovian collision term [18,19]. In the Hartree-Fock rep-
resentation, the Fourier transform of the self-energy of col-
lective modes due to coupling with the incoherent 2p-2h
states is given by

Σλ(ω) =
1
4

∑
∣∣∣〈ij|[O†

λ, v]|kl〉A
∣∣∣2

�ω −∆ε+ iη

× [nknln̄in̄j − ninj n̄kn̄l] , (1)

where O†
λ is the collective operator associated with the

RPA mode λ, v is the effective interaction that couples
the ph-space with 2p-2h configurations, n̄i = 1 − ni,
∆ε = εi + εj − εk − εl , and η is a small positive num-
ber [10]. The real and imaginary parts of the self-energy,
Σλ(ω) = ∆λ(ω)− i

2Γλ(ω), determine the energy shift and
the damping width of the collective excitation, respec-
tively [3].

We evaluate the expression for the self-energy in the
Thomas-Fermi approximation, which corresponds to the
semi-classical transport description of the collective vibra-
tions. In Thomas-Fermi approximation the self-energy of
the collective modes can be deduced from the quantal ex-
pression (1) by replacing the occupation numbers ni with
the equilibrium phase-space density given by the Fermi-
Dirac function as ni → f(ε, T ) = 1/[exp(ε − µ)/T + 1]

with µ denoting the chemical potential, and summations
over the 2p-2h states with integrals over phase-space, Σ →∫

drdp1dp2dp3dp4 [10,20]. Furthermore, spin-isospin ef-
fects in collective vibration can be incorporated into the
treatment by considering proton and neutron degrees of
freedom separately. Observing that in isoscalar modes pro-
tons and neutrons vibrate in phase, in Thomas-Fermi ap-
proximation the collisional widths of isoscalar modes can
be expressed as [10]

Γ s
λ =

1
Nλ

∫
drdp1dp2dp3dp4[Wpp +Wnn + 2Wpn]

× (∆χλ)2

2
Zf1f2f̄3f̄4 , (2)

where Nλ =
∫

drdp(χλ)2(− ∂
∂εf) is a normalization,

∆χλ = χλ(1)+χλ(2)−χλ(3)−χλ(4), Z = [δ(�ωλ−∆ε)−
δ(�ωλ +∆ε)]/�ωλ, and χλ(t) denotes the distortion factor
of the phase-space density δf(t) = χλ(t)(−∂f/∂ε) in the
corresponding mode. In this expression, two-body tran-
sition rates Wpp,Wnn and Wpn associated with proton-
proton, neutron-neutron and proton-neutron collisions are
given in terms of the corresponding scattering cross-
sections

W (12; 34) =
1

(2π�)3
4�

m2

dσ
dΩ

δ(p1 + p2 − p3 − p4). (3)
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Fig. 2. The spin-isospin averaged nucleon-nucleon in-medium cross-sections as a function of density ρ at Elab = 100MeV.
Dotted lines are cross-sections of Li and Machleidt, and solid and dashed lines are cross-sections with the SkM∗ and the Gogny
forces with the bare nucleon mass (left) and the effective nucleon mass (right), respectively.

Fig. 3. The collisional damping width of giant monopole reso-
nance in 120Sn and 208Pb as a function of temperature. Dotted
lines are calculations with the cross-sections of Li and Mach-
leidt, and solid and dashed lines are results with the SkM∗ and
the Gogny cross-sections with the bare nucleon mass (lower
panels) and the effective nucleon mass (upper panels).

We apply formula (2) to calculate the collisional widths
of monopole and quadrupole vibrations. We use the nu-
clear fluid dynamical model to express the distortion fac-
tors of the momentum distribution in which the distor-
tion factors can be expressed in terms of the velocity
field Φ(r) associated with the collective mode as χ =
(p·∇)(p·∇)Φ(r). An accurate description of the monopole

vibrations can be obtained by parameterizing the velocity
field in terms of the zeroth-order Bessel functions Φ(r) =
j0(kr), with the wave number k = π/R, and the nuclear
radius R [21,22]. For the quadrupole vibrations, we use
the parameterization of the velocity field in terms of the
second-order Bessel function Φ(r) = j2(kr) and take k =
3.34/R [23]. We also carry out the calculations for the col-
lisional width of the quadrupole vibrations by taking the
distortion factor of the momentum distribution according
to the scaling picture as χQ = p2P2(cos θ) [10]. In the case
of isoscalar modes, the collisional width is determined by
the spin-isospin averaged nucleon-nucleon cross-section,
(dσ/dΩ)0 = [(dσ/dΩ)pp + (dσ/dΩ)nn + 2(dσ/dΩ)pn]/4.
The nucleon-nucleon cross-sections in this expression as-
sociated with an effective residual interaction can be ex-
pressed as

(
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dΩ

)
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(
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)
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π
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and
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× |〈q;S, T |v|q′;S, T 〉A|2 , (5)

where q = (p1 − p2)/2, q′ = (p3 − p4)/2 are the
relative momenta before and after a binary collision,
and 〈q;S, T |v|q′;S, T 〉A represents the fully antisymmet-
ric matrix element of the residual interaction between two-
particle states with total spin and isospin S and T . By
noting that, S = T = 1 and S = T = 0 matrix elements of
the interaction are space antisymmetric, and S = 1, T = 0
and S = 0, T = 1 matrix elements are space symmetric, we
find that the spin-isospin averaged nucleon-nucleon cross-
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section associated with the Gogny force is given by
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where m∗
G denotes the effective mass corresponding to the

Gogny force, and the quantities I+
i and I−i are the sym-

metric and antisymmetric matrix elements of the Gaussian

Fig. 4. The collisional damping width of giant quadrupole res-
onance in 120Sn and 208Pb as a function of temperature. Dotted
lines are calculations with the cross-sections of Li and Mach-
leidt, and solid and dashed lines are results with the SkM∗ and
the Gogny cross-sections with the bare nucleon mass (lower
panels) and the effective nucleon mass (upper panels). For dis-
tortion factors the fluid dynamical model is used.

factor in the force,
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πµi)3
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4
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)
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In these expressions, ρ is the local density and
Wi, Bi,Hi,Mi, µi denote the standard parameters of the
Gogny force [24,25]. In a similar manner, this cross-section
can be calculated in terms of the effective Skyrme force as
[10,17]
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The expressions for the effective masses m∗
G(r) and m∗

S(r)
for the Gogny and Skyrme forces are given in [24,25]. The

Fig. 5. The collisional damping width of giant quadrupole res-
onance in 120Sn and 208Pb as a function of temperature. Dotted
lines are calculations with the cross-sections of Li and Mach-
leidt, and solid and dashed lines are results with the SkM∗ and
the Gogny cross-sections with the bare nucleon mass (lower
panels) and the effective nucleon mass (upper panels). For dis-
tortion factors the scaling approximation is used.
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angle Θ between q and q′ in the cross-sections (6) and (8)
defines the scattering angle in the center-of-mass frame,
and the total cross-section is found by an integration over
this angle, σ0 = 2π

∫
sinΘdΘ (dσ/dΩ)0. Microscopic in-

medium cross-sections of Li and Machleidt [16] for proton-
proton and neutron-proton cross-sections are parameter-
ized as

σLM
pp = [23.5 + 0.00256

(
18.2 − E0.5

lab

)4.0
]

× 1.0 + 0.1667 E1.05
lab ρ3

1.0 + 9.704 ρ1.2
, (9)

σLM
pn = [31.5 + 0.092

∣∣20.2 − E0.53
lab

∣∣2.9
]

× 1.0 + 0.0034 E1.51
lab ρ2

1.0 + 21.55 ρ1.34
, (10)

where Elab = (p1−p2)2/2m = 2q2/m is the kinetic energy
of the projectile in the rest frame of the target nucleon
which is also equal to twice the energy available in the
center-of-mass frame.

In fig. 1 and fig. 2, we compare the spin-isospin aver-
aged nucleon-nucleon cross-sections calculated using the
microscopic in-medium cross-sections of Li and Machleidt
(dotted lines) with the cross-sections of the Gogny force
(dashed lines) and the Skyrme force (solid lines) with
SkM∗ parameters. In fig. 1, the total cross-sections are
plotted as a function of the projectile energy Elab at two
different nuclear matter densities ρ = ρ0 = 0.18 fm−3 (top
panel) and ρ = ρ0/2 (bottom panel). The cross-sections
shown in the left and right parts of the figure are calcu-
lated with the bare nucleon mass and the corresponding
effective masses, respectively. Around the normal nuclear
matter density ρ ≈ ρ0, and over a narrow energy inter-
val around 150 MeV, these cross-sections roughly match,
but at lower densities and at lower and higher energies in
particular the Skyrme cross-sections deviate strongly from
the microscopic cross-sections, deviations being larger in
the calculations with the bare nucleon mass. However, as
seen from fig. 1, the Gogny force does in fact quite a bit
better than the Skyrme force in matching with the micro-
scopic cross-sections, even at lower nuclear densities. In
fig. 2, the cross-sections are shown as a function of den-
sity for the bombarding energy Elab = 100 MeV. The mi-
croscopic calculations approach the free nucleon-nucleon
cross-section for decreasing density, on the other hand,
the phenomenological cross-sections strongly increase and
reach large values in free space. Therefore, we can safely
state that the microscopic calculations of Li and Mach-
leidt provide a more reliable description of the in-medium
cross-sections than those given by the finite-range Gogny
and the zero-range Skyrme force. In a previous work [17],
the momentum integrals in the expression for the damping
width of giant dipole resonance were evaluated exactly. We
follow the same method in the present work and evaluate
the momentum integrals in the expression (2) exactly for
monopole and quadrupole vibrations. In this calculation
the angular anisotropy of the cross-sections are neglected
and we make the replacement (dσ/dΩ)0 → σ0/4π. In

the numerical evaluations, we determine the nuclear den-
sity ρ(r) in Thomas-Fermi approximation using a Wood-
Saxon potential with a depth V0 = −44 MeV, thick-
ness a = 0.67 fm and sharp radius R0 = 1.27A1/3 fm,
and we calculate the position-dependent chemical poten-
tial µ(r, T ) in the Fermi-Dirac function f(ε, T ) at each
temperature. We use the formula �ω = 64A−1/3 MeV for
the giant quadrupole resonance energies, and the expres-
sions �ω = 31.2A−1/3 + 20.6A−1/6 MeV for A ≥ 70 and
�ω = 17.5 MeV for A < 70 to calculate the giant monopole
resonance energies. Figure 3 shows the collisional damp-
ing width of giant monopole resonance in 120Sn and 208Pb
as a function of temperature. In fig. 4, we show the col-
lisional damping width of giant quadrupole resonance in
120Sn and 208Pb as a function of temperature, where we
use the distortion factors of momentum distributions ob-
tained from the fluid dynamical model by the parametriza-
tion Φ(r) = j2(kr) of the velocity field. The collisional
damping widths of the same nuclei calculated by employ-
ing the distortion factor χQ = p2P2(cos θ) using scaling
approximation are shown in fig. 5. In these figures T = 0
experimental data points are also indicated. Calculations
performed with the cross-sections of Li and Machleidt are
denoted with dotted lines. For comparison, in figs. 3-5, we
also show the results with the SkM∗ (solid lines) and the
Gogny (dashed lines) cross-sections. To be consistent with
the theory of effective forces, these calculations are per-
formed with the corresponding effective nucleon masses
and the results are presented in the upper panel of these
figures. We also include the result of calculations with
the SkM∗ and the Gogny forces with the bare nucleon
mass in the lower panel of figures. For both monopole and
quadrupole vibrations, the calculations with cross-sections
of Li and Machleidt exhibit a weaker temperature depen-
dence than the calculations with the SkM∗ and the Gogny
cross-sections with the bare nucleon mass and result in
considerably smaller damping widths at all temperatures
than those with the cross-sections of the phonemenologi-
cal forces. However, if the effective nucleon mass is used,
the calculations employing microscopic and phenomeno-
logical cross-sections give collisional damping widths that
almost agree with each other at low temperatures with
differences becoming somewhat more appreciable only at
high temperatures. This is due to the fact that at relatively
low temperatures the overwhelming contributions to the
damping in expression (2) arises from the vicinity of the
nuclear surface ρ ≈ ρ0/2. As seen from right panel of fig. 1,
for laboratory bombarding energies E ≈ 100 MeV, that
is about twice the Fermi energy, phenomenological and
microscopic cross-sections have more or less comparable
magnitudes. Furthermore, a comparison of fig. 4 and fig. 5
shows that the calculations for quadrupole vibrations em-
ploying the scaling approximation for the distortion fac-
tors result in smaller values for the damping width as a
function of temperature than those where the distortion
factors are determined from the fluid dynamical picture.
Moreover, in calculations using the effective nucleon mass,
scaling approximation for the distortion factors gives re-
sults for the collisional damping widths that become some-
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Fig. 6. The collisional widths of giant monopole (left) and giant quadrupole (right) vibrations as a function of the mass number
at zero temperature with effective nucleon mass. Experimental widths are shown by solid dots with error bars.

what more appreciably different for microscopic and phe-
nomenological cross-sections at relatively high tempera-
tures. In fig. 6, we show the collisional damping widths of
giant monopole (left) and quadrupole vibrations (right) as
a function of the mass number at zero temperature cal-
culated with the microscopic cross-sections (dotted lines),
and with the SkM∗ (solid lines) and the Gogny (dashed
lines) cross-sections. Here, we use the effective nucleon
mass and employ the scaling approximation for distortion
factors in quadrupole vibrations, since at zero tempera-
ture both scaling and fluid dynamical pictures for distor-
tion factors give results that are not appreciably differ-
ent from each other. If we base our conclusion on the re-
sult obtained employing the microscopic in-medium cross-
sections, we can conclude that the collisional damping of
giant monopole vibrations accounts for about 30−40% of
the observed widths at zero temperature, while for giant
quadrupole vibrations it accounts for only 20−30% of the
observed widths at zero temperature.
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